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Casinos offer many forms of video poker machines (technically, slot machines).  Finding optimal 

strategies to play these games is tedious but straightforward.  However, a recently introduced game 

poses a greater analysis challenge since optimal play depends on not only the current hand of play 

but the impact on a subsequent hand.  This leads to analyzing a very large non-discounted Markov 

Decision problem.  This paper explores this analysis. 
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1. Introduction 

Most casinos offer various types of video poker slot machines, such as Jacks or Better or Deuces 

Wild.  Unlike most other types of slot machines, the probabilities of outcomes are known to 

players and optimal play can be determined.  After a bet is placed, the machine displays five 

cards randomly drawn without replacement from a deck of cards.  The player selects zero, one or 

more of these to hold, discarding the rest.  The machine then fills-in the discarded cards drawn 

randomly from the deck with the initial five cards removed.  The player wins an amount based 

on the outcome of this completed hand and on the pay-table for the selected game.  A typical 

table of payouts per betting unit (e.g., a quarter or dollar) for placing a maximum bet (typically 

of five betting units) is as shown in Table 1: 

 

Jacks or Better  Deuces Wild 

Outcome Value  Outcome Value 

Royal Straight Flush 800  Natural Royal Straight Flush 800 

Straight Flush 50  Four Deuces 200 

Four of a Kind 25  Wild Royal Straight Flush 25 

Full House 9  Five of a Kind 15 

Flush 6  Straight Flush 9 

Straight 4  Four of a Kind 4 

Three of a Kind 3  Full House 4 

Two Pair 2  Flush 3 

Jacks or Better Pair 1  Straight 2 

   Three of a Kind 1 

Otherwise 0  Otherwise 0 

 Table 1:  Outcome Values per betting unit (on a maximum bet). 

 

These games have well-known optimal strategies (e.g., see http://wizardofodds.com/videopoker 

Shackleford 2010). 

 

Finding an optimal strategy is straightforward, though tedious.  Let  be the set of all five-card 

hands that can be dealt from a deck of cards.  In most video poker games, the deck is a standard 

one containing 52 cards.  (Some games, like Joker Poker, include additional cards - in Joker 

Poker there is one additional card, a Joker, a “wild” card meaning it can be used as any card).  

Also, in most games, the order of the cards in a five card hand is not important.  However, in 

some variations, order is important.   reflects these considerations once a particular game is 

selected. 

http://wizardofodds.com/videopoker
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For any five card hand, H  , let 
iH  be the ith subset of H , i=0,…,31.  For example, if 

 2 , , ,3 ,7H H JC QD S S= , meaning a hand containing a 2 of Hearts, a Jack of Clubs, a Queen of 

Diamonds, a 3 of Spades and a 7 of Spades, then 
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Let jV  be the value of outcome j relevant to the game (e.g., a Flush) and 

 ( ) ( )|j i j iP H prob outcome H=   

be the probability of outcome j computed from all possible completions of subset i from the deck 

of cards with the cards listed in H  removed.  The expected return for choosing subset i is 

( )
iH j j i

j

R V P H= .  The set of optimal actions, HS , for hand H   is found by solving 

 ( )arg maxH j j i
i j

S V P H=  . 

Ties can be broken by choosing from optimizing actions based on other criteria (e.g., those 

minimizing or maximizing the variance).  For example, for  H JS,10H,JH,2D,2C=  in Deuces 

Wild with the outcome values in Table 1, there are two optimal actions giving an expected value 

of 4.9361702127659575:  

  JS,JH,2D,2C  variance = 9.4214576731552722 

  10H,JH,2D,2C  variance = 51.549117247623357. 

In the following we focus on just expected values so we are indifferent between optimal actions.  

Let 
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( )
HH j j i S

j

R V P H =  

be the expected optimal return for hand H  when using any action in HS .   

 

An optimal strategy, S , for the game, is composed of the collection of optimal actions for each 

hand.  The expected value of an optimal strategy is 

 
S H H

H

R P R


=   

where 
HP  is the probability of hand H .  Of course, in a fair game, 

1

HP
−

= .  The optimal 

expected profit is computed by 

 
H H

H

P R K−  

where K  is the cost of playing one round of the game.  For example, in Jacks or Better and 

Deuces Wild with the outcome values in Table 1, the optimal expected profits per hand of play 

are -0.00456096 and -0.010869, respectively. 

 

The number of possible hands for a standard 52 card deck (ignoring order) is  

 
52

2,598,960
5

 
= 

 
 

so a brute force analysis would require examining each of these and the possible 32 different 

ways to select subsets to hold followed by an enumeration of all possible outcomes.  The subsets 

producing a maximum expected value would be chosen and these would comprise HS .  The 

number of completions of sub-hand i are 

 
47

iH

 
 
 

 

Thus, each hand’s evaluation requires the examination of 

 
31

0

47
2,598,960

i iH=

 
= 

 
  

hands.  Thus, a straightforward analysis to find all 2,598,960 optimal actions would require 

examining 22,598,960  hands.   
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A standard trick to ameliorate the computational challenge is to recognize that many hands are 

just permutations over the suites of other hands, and hence have the same expected outcomes.  

For example,  2 , , ,3 ,7S JC QD H H  is just a simple suite permutation of  2 , , ,3 ,7H JC QD S S  

where Spades replaces Hearts, and Hearts replaces Spades.  There are 24 permutations of the 

four suites.  When this fact is taken into account, there are only 134,459 unique poker hands that 

need to be examined (for a 52 card deck where order is not important).  Let   be this 

reduced set and for any H  , let ( )f H  be the number of hands in  having permutations 

that map to H.  Then the value of an optimal strategy is 

 ( )S H H

H

R f H P R


=   

 

As alluded to above, there are many variants of video poker including ones dependent on a deck 

of 53 cards (Joker Poker), or on the order of the cards (e.g., sometimes a sequential Royal 

Straight Flush has a separate, larger payout) or type of suite involved (some variants offer a 

progressive jackpot based on a player attaining a Royal Straight Flush in Diamonds – called 

Royal Diamonds) in the outcome.  Others depend on the standard outcomes (like a four of a 

kind), but give different payouts depending on the rank (e.g., four Aces pays more than other 

four of a kind hands) and possibly on the value of a fifth card (a kicker).  Even for the same 

game, there are many variants of the payout tables, some actually giving a positive expected 

profit for the game!  In any case, establishing an optimal return for the many variants of video 

poker is straightforward (although tedious) following the general ideas above.   

 

A byproduct of this analysis is an optimal strategy, S, which dictates the optimal action for each 

possible starting hand.  This is often translated into a simple decision list (Rivest, 1987) or 

decision tree (Quinlan, 1993) using features1 of hands so a human player can memorize the 

strategy for play at a casino.  A decision list gives a ranked list of rules for selecting subsets to 

hold.  For example, a partial such decision list for Jacks or Better with the pay table in Table 1 is 

(http://wizardofodds.com/jacksorbetter Shackleford 2010): 

 
1 Here a feature is a characteristic of a hand that captures useful information for identifying optimal actions.  For 

example, “4 to a straight flush” is a feature meaning the hand has four cards of a possible straight flush hand such as 

 8 ,9 , , ,3C C JC QC H .   

http://wizardofodds.com/jacksorbetter
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Dealt royal flush 

Dealt straight flush 

Dealt four of a kind 

4 to a royal flush  

Dealt full house 

Dealt flush 

3 of a kind 

Dealt straight 

4 to a straight flush 

Two pair 

High pair 

3 to a royal flush 

4 to a flush 

 … 

A only 

3 to a straight flush (type 3) 

Garbage, discard everything 

 

This means that one first checks if the dealt hand is a royal straight flush.  If so, hold that.  If not, 

then check if it is a straight flush.  If so, hold that.  If not, then proceed to the next test.  And so 

on. 

 

Some video poker machines offer multiple line versions of the games.  A multi-line game starts 

with displaying one five-card hand and the player selects some subset to hold, as usual. This held 

hand is randomly completed for each line of play (each from a deck containing the remaining 

cards after removing the initial hand).  That is, if the game has ten lines (including the initial 

hand), then there are ten outcome hands.  The expected return and optimal strategies all remain 

the same as the single line game.  However, the variance of the multi-line game and the 

associated gambler’s ruin probabilities for a fixed budget would be different. 

 

Recently an interesting new type of video poker game has been released by IGT 

(https://www.igt.com), called Ultimate X Poker (for example, see 

http://www.casinoenterprisemanagement.com/articles/february-2009/new-class-iii-slots-

february-2009).    The outcome of the current hand (like a Flush) results in an immediate payoff, 

as usual, plus establishes a multiplier for the next hand’s outcome.  For example, the multipliers 

for one version of Deuces Wild are shown in Table 2.  So, if the current hand results in a Flush 

the player gets the usual payoff (for example, 3 bet units for each unit bet as shown in Table 1) 

http://www.casinoenterprisemanagement.com/articles/february-2009/new-class-iii-slots-february-2009
http://www.casinoenterprisemanagement.com/articles/february-2009/new-class-iii-slots-february-2009
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plus establishes a multiplier of 5 (Table 2) that will be applied to the payoff of the next hand.  If 

the next hand results in a win, the player receives 5 times the normal amount.  In any case, 

whatever the outcome, the multiplier is adjusted for the next hand. 

 

In Ultimate X Poker, the value of an action is the value of the outcome, jV , of the current hand 

(times the current multiplier) plus a multiple of the value of the outcome of the next hand.  The 

cost of playing is twice the usual cost.  Ultimate X Poker is offered usually as multi-line games 

(e.g., 3, 5 and 10 lines). 

 

Deuces Wild Multipliers 

Outcome Multiplier 

Natural Royal Straight Flush 4 

Four Deuces 4 

Wild Royal Straight Flush 4 

Five of a Kind 3 

Straight Flush 12 

Four of a Kind 7 

Full House 5 

Flush 5 

Straight 3 

Three of a Kind 2 

Otherwise 1 

 Table 2:  Ultimate X Multiplies for 10 Line, Deuces Wild 

 

In multi-line versions, the outcome of each line establishes the multiplier for the next hand on 

that line.  Figure 1 shows the game after a hand has established multipliers.  Here the multiplier 

on the second hand was 2 at the start of play and zero for the other two hands.  Two deuces were 

held.  The completion resulted in outcomes of a four of a kind on hand one (giving a multiplier 

of 7 for the next hand on this line), and three of a kinds on the other two hands (giving 

multipliers for the next hands of 2).  The payout on this hand was the regular payout for the three 

of a kind (1), plus two times the payout for a three of a kind, plus the regular payout for a four of 

a kind (4) giving a total of 7 (times the number of bet units played). 
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 Figure 1:  3-line deuces wild Ultimate X Poker (http://www.videopoker.com/) 

 

An analysis of this game is substantially more involved than the typical video poker game since 

the current hand’s  return depends on the outcome of the previous hand.  This note provides an 

analysis of the game.   To our knowledge, this game had not been rigorously analyzed.  A 

leading expert on gambling analyses, Michael Shackelford, states while referring to tables of 

expected returns of the various forms of the Ultimate X game: 

“This would have been a very difficult analysis, and nobody would have cared, other than 

me, if I cracked it. So the above tables have been kindly provided by IGT (the game 

maker), who I thank. All I know is that they did an "exhaustive" analysis, meaning they 

looked at the billions of possible game states to arrive at a return” 

(http://wizardofodds.com/ultimatex Shackleford 2010). 

Just what type of analysis IGT performed was not reported.  As it turns out, our analysis 

confirms the IGT values.  Nonetheless, their work is unpublished and this paper makes clear the 

challenges of analyzing this game and leaves open several interesting avenues for future 

research. 

 

2. Analysis of Ultimate X Poker 

Let L be the number of lines played.  Let M  be the set of possible payoff multipliers.  For 

example, in Table 2,  1,2,3,4,5,7,12M = .  Let   be the set of permutations of the elements of 

M taken L at a time with repetition.  For example, for 2L =  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1,1 , 1,2 , 1,3 , 1,4 , 1,5 , 1,7 , 1,12 , 2,1 , , 12,12= . 

http://wizardofodds.com/ultimatex
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The multipliers for the L hands at the start of a hand are those found in one of the elements of M

.  The starting state of each round of play is thus ( ), H  where   results from the previous 

hand’s outcomes and H   is a randomly generated next hand.   Since the outcome of any 

action depends on just ( ), H  and what a decision maker chooses to hold in H , and not the 

history leading one to this state, the Markov property holds and the resulting problem is a 

Markov Decision problem2.   

 

The number of permutations (with repetition) of M  things L at a time is 
L

M , so a 10-line 

version of Ultimate X with the multipliers shown in Table 2 has 107 282,475,249=  multiplier 

patterns a player may see.  So the number of states is 
5

Ln
M

 
 
 

 where n is the size of the deck of 

cards used (assuming order of the cards is not important).  For example, for decks of 52 cards 

and a 10-line game, the number of states is 2,598,960*282,475,249=734,141,873,141,040 .  

 

Let ( )
c

m c


=


  where the sum is over the multiples listed in  ,  .  So for each state one 

would solve 

 ( ) ( ), ,max
iH H i

i
S m R P H R



= +   


  

where 

 ( ) ( )( ), ,

1

L

i iP H P H
=

=     

and ( ), iP H   is the probability of an outcome having an associated multiplier of   given one 

starts in state ( ), H  and chooses to hold iH .  R  is the optimal expected return when the 

multipliers are  .  The first term of ,HS  anticipates the outcome of the current hand (multiplied 

by the appropriate multiplier for each line) and the second term is the expected outcome of the 

next hand.  ( ), iP H   needs a little discussion.  The probability of going from state ( ), H  to an 

 
2 The associated Markov chains are readily shown to be ergodic. 
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outcome having an associated multiplier of   is dependent only on iH , not on  .  Of course, an 

optimal choice for subset i does depend on  , and we use our notation to reflect this. 

 

 Since the present decision impacts future returns and decisions, several considerations are 

possible.  If the time-value of money plays a role (for example, a professional gambler may play 

the game over a period of months or years), then one might discount the returns from future 

hands by focusing on the following problem 

 ( ) ( ),max
iH i

i
m R P H R



+    


  . 

Here  )0,1  is a discount factor giving the expected present value of money from the next 

decision period.  Since the game play is quick, it is hard to imagine that  would be measurably 

smaller than 1.0 so, more commonly, one would probably not discount the future returns.  In 

such cases a non-discounted form of the problem is appropriate.   

 

Another factor is the length of play.  Although there will always be only a finite number of 

rounds of play, the mathematical analysis and long-term results are best handled by assuming an 

infinite number of rounds of play.  This not only simplifies the calculations but gives strategies 

that are optimal for a reasonable number of rounds are played. For the non-discounted problem 

this can result in infinite (negate or positive) total returns.  So, for the non-discounted case, one 

focuses on maximizing the average gain per round of play (e.g., see Derman 1970). 

 

The infinite horizon, non-discounted, Markov Decision problem (ndMDP) for this game is stated 

as  

 
( ) ( ),max

0

iH H i
i

H

v g P m R P H v

P v

   


 


 
 

 
+ = +  

 

=

 


   

 (1) 

where g is the maximal gain per round of play and P  is the steady-state probability of being in 

state   (before a hand is dealt) under optimal decisions.  The value v  is interpreted as the 
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relative bias for state  .  Note that ( )g KL  is the optimal expected return per bet unit for 

the game. 

 

An ndMDP is usually solved using one of three methods: value iteration, policy iteration or 

linear programming (for example, see Derman, 1970).  All of these methods are computationally 

sensitive to the number of states involved, which, as shown above, could be very large.  Both 

linear programming and policy improvement methods would require enormous numbers of 

equations and are not practical alternatives since both would require working with items (e.g., 

matrices) having a size equal to at least the square of the number of states, truly large sizes.  

Value iteration offers an advantage in that one needs only essentially four vectors the size of the 

  (two for the relative biases v  and two for the stationary probabilities P ).  Indeed, there are 

value iteration methods needing only two such vectors (where Gauss-Seidel iterations are used 

e.g., Porteus 1981). 

 

We studied this problem using value-iteration (Derman 1970).  With value iteration one 

successively computes 

 ( ) ( )1 1 1

,max
i

n n n n

H H i
i

H

v g e P m R P H v    


 + + +

 

 
+ = = +  

 
           (2) 

1 1 1n n ng P e 


+ + +=            

( )
,

1

, H

n n

i SP P P H+





=     


          

These iterations continue until the change in iterates ( 1 1 1, ,n n nv g P 

+ + + ) reduces to some small 

value.  It is well-known that these converge here. For a one line version of the Ultimate X Poker 

game in Table 2 we found the results shown in Table 3. The optimal gain rate is 

1.989680522g =  making it a negative expected value game (since 2K = ).  Its expected return 

per unit bet is 0.994840.  

 

 

 

 



12 

 

Deuces Wild – 1 Line 

  v  P  

(1) -1.003399219 0.556280413 

(2) -0.01819477 0.265939238 

(3) 0.968865825 0.058338112 

(4) 1.956764857 0.001788994 

(5) 2.945128634 0.051826156 

(7) 4.922771038 0.060508713 

(12) 9.868120983 0.005318374 

 Table 3: Solution to one line version of the game with multiples in Table 2 

 

 

To proceed much beyond one line games, some algorithmic tricks are needed because the 

problem sizes grow so fast.  Now, many of the states,  , are equivalent in terms of a 

player’s expected return and the transition probabilities to subsequent states.  We discussed 

earlier how the outcomes of many hands are equivalent to other hands where the suites have been 

permuted.  Likewise, many of the multiplier permutations are equivalent.  For example, in a 3-

line game,  3,5,5=  will give the same expected payouts as  5,3,5  and  5,5,3 .  Clearly the 

order of the multipliers across the lines of play is not important.  Let C   contain just the 

unique combinations (say those in sorted order).  So 

 
1

1

M L
C

M

 + − 
=  

− 
. 

Hence, one can focus on just C  payoff patterns (i.e., the number of combinations with 

repetition), recognizing that some may have multiple different ways they can be seen.  Thus, for 

a ten-line game, one can reduce the state space size to  

 
16

134,459 1,076,747,672
6

 
= 

 
 

states.  This is clearly better than the 147.34 10  states shown earlier, but is still a large number.   

 

With this, we can reduce (2) in a straightforward manner.  Before doing so, another reduction 

results from the following theorem.  This insight was first noted by Shackleford 

(http://wizardofodds.com/ultimatex Shackleford 2010) where he states:  

http://wizardofodds.com/ultimatex
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“The strategy in Ultimate X will depend not only on your cards, but the sum of the 

current multipliers.” 

 

Theorem 1 

 Let ,    then R R=   if ( ) ( )m m=  . 

Proof: 

Solutions satisfy (1) so 

 ( ) ( ),max
iH H i

i
H

R g P m R P H R   



 

 
+ = + 

 
   

 ( ) ( ),max
iH H i

i
H

R g P m R P H R   



 

 
+ = + 

 
   

and then 

 

( ) ( )

( ) ( )

,

,

max

max

i

i

H H i
i

H

H H i
i

H

P m R P H R

R R

P m R P H R

  


 

  






 

 

  
+  

   
− =  

  
− +  

  

 

 

 

 

( ) ( )

( ) ( )
, ,

, ,, ,

i S i SH H

H H

H H

H

H i S i S

m R m R

P
P H R P H R

 

      
 

 
 

  

 

− 
 

  + − 
 


 

. 

But, by assumption, ( ) ( )m m=   so we get this last term reduces to 

 ( ) ( )
, ,, ,H HH i S i S

H

P P H P H R R
      

 
 

  

 
− 

 
   . 

Likewise 

 ( ) ( )
, ,, ,H HH i S i S

H

R R P P H P H R R
        

 
 

  

 
−  − 

 
   . 

However, as discussed earlier, ( ) ( ), ,i iP H P H=     so we have 0 0R R −   . 

 
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Thus the computational burden can be reduced further to considering just representative 

combinations in C for each possible sum ( )m  .  Let D C   be such a set.  For example, 

for the multipliers in Table 2 the differences in state sizes are shown in Table 4.  

  

 3-Lines 5-Lines 10-Lines 

L
M =  343 16,807 282,475,249 

1M L
C

L

 + − 
=  
 

 84 462 8,008 

D  29 51 106 

Table 4:  Size of Sets 

 

Then the first line of (2) can be reduced to 

( ) ( )1 1 1

,max
i

n n n n

H H i
i

H D

v g e P m R P H v D    


 + + +

 

 
+ = = +  

 
           (3) 

( ) ( )1 1 / ,n nv v D m m+ +=  =            

where 

 ( ) ( )

( ) ( )

, ,i i

m m

P H P H

=

=    

 

 

Of course, the first line can be reduced further to 

 ( ) ( ) ( )1 1 1

,max
i

n n n n

iH H H
i

H D

v g e P f H m R P H v D    


 + + +

 

 
+ = = +  

 
          (4) 

( ) ( )1 1 / ,n nv v D m m+ +=  =     .      

Using this approach we found the results shown in Table 5 for a 2-line version of the game with 

multipliers in Table 2.  The optimal gain rate is 3.978525287g = .  The expected return per unit 

bet is 0.994631. 
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Deuces Wild – 2 Lines 

D  v  P  

(1,1) -2.0052132 0.392717712 

(1,2) -1.0209311 0.207469421 

(1,3) -0.0347993 0.044863041 

(2,2) -0.0347993 0.114908538 

(1,4) 0.95206921 0.001048511 

(2,3) 0.95206921 0.019711084 

(1,5) 1.9393246 0.045285236 

(2,4) 1.9393246 0.000842345 

(3,3) 1.9393246 0.02056649 

(2,5) 2.92701726 0.020909012 

(3,4) 2.92701726 0.000436112 

(1,7) 3.91512707 0.025244204 

(3,5) 3.91512707 0.002861137 

(4,4) 3.91512707 0.00028822 

(2,7) 4.90342169 0.050915072 

(4,5) 4.90342169 0.000232255 

(3,7) 5.89185552 0.006324037 

(5,5) 5.89185552 0.014547958 

(4,7) 6.88041633 0.000411045 

(5,7) 7.86922436 0.004083001 

(1,12) 8.8581477 0.003195022 

(2,12) 9.84714092 0.002458734 

(7,7) 9.84714092 0.0166127 

(3,12) 10.8361684 0.001489456 

(4,12) 11.8252209 6.14E-05 

(5,12) 12.814288 0.000721154 

(7,12) 14.7924319 0.000869944 

(12,12) 19.7378416 0.00092714 

 Table 5:  Results for a 2-line version of the game in Table 2. 

 

With the approach above, the results in Table 6 for three standard versions of Deuces Wild 

Ultimate X Poker were computed.  The Deuces Wild payouts are those shown in Table 1. 
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Deuces Wild Ultimate X 

Video Poker 

3-Line 5-Line 10-Line 

Outcome Multipliers Multipliers Multipliers 

Natural Royal Straight Flush 2 2 4 

Four Deuces 2 2 4 

Wild Royal Straight Flush 2 2 4 

Five of a Kind 2 3 3 

Straight Flush 12 12 12 

Four of a Kind 7 7 7 

Full House 5 5 5 

Flush 5 5 5 

Straight 3 3 3 

Three of a Kind 2 2 2 

Otherwise 1 1 1 

Optimal Gain Rate 5.9476897840 9.9265707305 19.8872461404 

Optimal Expected Return 0.9912816306 0.9926570731 0.994362307 

IGT Reported Returns 0.991282 0.992657 0.994362 

 Table 6:  Optimal expected returns for Deuces Wild Ultimate X Poker. 

 

 For these runs, 0 0v =  and 0 1P =  .  Iteration stopped when 

 1 1 1n n n n n n

D

g g v v P P S+ + +

 

− + − + − +      
 

  

where S is the number of differences in optimal actions over the last iteration and 
1010−= .  

The runs took several weeks of computation on a standard 64-bit Windows Vista machine with 

two Intel® Xeon™ 3.20 GHz processors and 8 GB memory. 

 

An interesting issue related to this game is “What impact do different numbers of lines have on 

the optimal return?”  As mentioned early, the optimal expected payout return for the typical 

video poker machine game remains unaffected by the number of lines played.  However, with 

the Ultimate X games, there is a subtle interplay between the number of lines and the expected 

outcomes.  Table 7 shows the change in the optimal expected return for two such games as the 

number of lines increases (using the payout for deuces wild in Table 1). 
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Deuces Wild Ultimate X 

Video Poker 

Version (see Table 6) 

 3-Line 

 

5-Line 10-Line 

Number of Actual Lines Optimal Return Optimal Return Optimal Return 

1 0.9916092452 0.9930796852 0.9948402612 

2 0.9913864469 0.9928558139 0.9946313218 

3 0.9912816306 0.9927510605 0.9945325397 

4 0.9912222957 0.9926921265 0.9944778071 

5 0.9911869190 0.9926570731 0.9944416786 

 Table 7:  Optimal expected returns as a function of the number of lines of play. 

 

As can be seen, the impact on expected return as the number of lines increases is negative but 

small.  This may explain why IGT chose to use larger multipliers for games with more lines (as 

can be seen in Table 6) although the larger values are on the less frequently seen outcomes. 

 

As for producing decision lists that summarize an optimal strategy for an Ultimate X game, it is 

unlikely this would be useful to a human since there are so many states.  We concur with an 

assessment Michael Shackleford made: 

“If you want to memorize proper strategy, you will need a separate strategy for all 

possible total multipliers, and there are hundreds of possibilities between 3-play, 5-play, 

and 10-play. In my opinion, the number of players who will ever know strategy within 

0.1% of optimal strategy, will be zero” (http://wizardofodds.com/ultimatex Shackleford 

2010). 

 

3. Variance 

Of interest is the variance of an Ultimate X game.  In computing variances, it is important to note 

that the trick used earlier to reduce the state space by using set D can’t be used (recall, the D set 

reduced states to unique sums of multipliers).  For example, the two states (2, 3, 4) and (1, 1, 7) 

both have the sum of multipliers, 9, but in a variance calculation, payouts will have a multiplier 

of 4+9+16 = 29 in the former case and 1+1+49 = 51 in the latter case.  So, for variance issues, 

these two states are not equivalent.   

 

http://wizardofodds.com/ultimatex
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Why is this important?  As discussed earlier, two holds may have the same expected value but 

different variances, so a strategy might prefer one hold over the other.  This will impact the game 

variance and the transition probabilities. 

 

 

4. Observations 

A casual observation of Table 6 suggests that IGT actually computed optimal strategies and 

expected returns instead of what we surmised based on: 

“All I know is that they did an "exhaustive" analysis, meaning they looked at the billions 

of possible game states to arrive at a return”.  (http://wizardofodds.com/ultimatex 

Shackleford 2010) 

(“they” refers to IGT).  Originally we assumed that this analysis was done by simulation.  

Simulations require the use of a strategy, so we doubted the expected returns given by IGT were 

optimal since we questioned whether optimal strategies were known by IGT.  We stand 

corrected.  Mere simulations without a reasonably accurate strategy couldn’t have produced the 

results reported by IGT which match ours found using non-discounted Markov decision 

methods.  

 

There are additional algorithmic tools used to solve Markov Decision Problems that might be 

useful for this problem class.  We mentioned using Gauss-Seidel iterates (Porteus, 1981).  These 

reduce the storage requirements but may not always improve over other iterative methods.  There 

are also other iterative methods (like Jacobi iterates, Porteus 1981).  It is also possible to 

permanently eliminate sub-optimal decisions as the iteration proceeds, thus, in principle, 

reducing the problem size (e.g., Hastings 1976 and Porteus 1971). These methods require finding 

bounds on the iterates. It would be of interest to explore these for the Ultimate X games.    

 

 

 

 

 

 

http://wizardofodds.com/ultimatex
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