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1. Introduction 

We refer the reader to our earlier paper analyzing Ultimate X1 Poker [2] for basic concepts.  

Ultimate X Bonus Steak alters the basic idea of Ultimate X Poker by offering a stream of 

multipliers (a streak) for different outcomes to be applied to subsequent hands of play, not just a 

single multiplier for the next hand as in the original Ultimate X games.  Like Ultimate X, this 

game costs twice the normal underlying game’s maximum bet amount to activate the Bonus 

Streak (e.g., the normal maximal bet amount is 5 coins per line in Jacks or Better). That is, it cost 

10 coins per line in Ultimate X.  As is usual for multi-line games, each game starts with the same 

hand dealt to all lines of play and the held cards apply to each line.  The outcomes come from 

independent draws from decks with the cards of the initial hand removed. 

 

Table 1 shows per coin payouts (based on the initial 5 coins) and multiplier streaks for each 

possible outcome for a Deuces Wild game.  For example, if on a line of play the current 

multiplier is 1 and one gets a Straight Flush then he will be paid 65 coins (5 times the outcome 

payout of 13).  The “5” is because we are showing payouts on a per-coin bet basis and 5 coins 

were bet (the additional 5 coins wagered were to enable the bonus streak feature).  This win sets 

up a streak so the next hand’s multiplier will be 2, the subsequent 4 and so forth.  However, if 

when in the midst of using a streak’s multipliers, the player gets an outcome with another non-

unit streak, then the current streak’s remaining multipliers are changed to multipliers of 12. 

 

Outcome Per Coin Payout 

CoinPayout 

Streak 

Royal Straight Flush 800 2,4,7,10,12 

Four Deuces 200 2,4,7,10,12 

Wild Royal Straight Flush 25 2,4,7,10,12 

Five of a Kind 16 2,4,7,10,12 

Straight Flush 13 2,4,7,10,12 

Four of a Kind (4K) 4 2,2,4 

Full House (FH) 3 2,2,4 

Flush 2 2,2,4 

Straight 2 1 

Three of a Kind (3K) 1 1 

Nothing 0 1 

 Table 1:  Ultimate X Bonus Steak Multiplies, Deuces Wild 

 
1 Both Ultimate X and Ultimate X Bonus Streak were created by IGT (https://www.igt.com/) and are  offered in 

their video poker machines.  

https://www.igt.com/
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For example, suppose there is just one multiplier in place in the current streak for a line of play. 

Then let’s track what happens with the following sequence of hands and outcomes shown in 

Table 2.  The first hand results in a Three of a Kind and the payout is multiplied by the Outcome 

Multiplier of 1.  The new streak is just “1”.  The Straight Flush with Hand 2 sets up a streak of 

future multipliers (2,4,7,10,12). We see these successively applied in the next two hands.  

However, the Full House outcome at Hand 4 would normally establish a streak of 2,2,4 but since 

we already have a streak longer than one element, the current remaining streak (7,10,12) is 

changed to all 12 multipliers (i.e., to 12,12,12). 

 

Hand Starting Streak Outcome Outcome Multiplier New Streak 

1 1 Three of Kind 1 1 

2 1 Straight Flush 1 2,4,7,10,12 

3 2,4,7,10,12 Nothing 2 4,7,10,12 

4 4,7,10,12 Full House 4 12,12,12 

5 12,12,12 Three of Kind 12 12,12 

6 12,12 Nothing 12 12 

7 12 Nothing 12 1 

8 1 Nothing 1 1 

 Table 2:  Example of Multiplier Evolution 

 

Table 3 shows the possible streaks one might see at the start of a hand. 

 

Streak Streak Values 

1 1 

2 4 

3 12 

4 2,4 

5 10,12 

6 12,12 

7 2,2,4 

8 7,10,12 

9 12,12,12 

10 4,7,10,12 

11 12,12,12,12 

12 2,4,7,10,12 

 Table 3:  Possible Observable Multiplier Streaks 
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2. Expected Value Analysis 

Let M  be the set of possible starting multiplier streaks.  For example, for the streaks in Table 3 

we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 , 2,2,4 , 2,4 , 4 , 12,12 , 12 , 2,4,7,10,12 ,

4,7,10,12 , 7,10,12 , 10,12 , 12,12,12,12 , 12,12,12
M

  
=  
  

.   

Likewise, let   be the set of permutations of the elements of M taken L (the number of lines) at 

a time with repetition.  So for a 3-Line game, each    looks like ( )1 2 3, ,   =  where 

i M   and the jth multiplier of i  is ( )i j .    gives all of the possible streak states a player 

might see for the L lines before starting a hand of play. 

 

Technically, the starting state of each round of play is ( ), H  where   results from the 

previous hands’ outcomes and H   is a randomly generated next hand and  is the set of all 

possible starting hands.  Since the outcome of any action depends on just ( ), H  and what a 

decision maker chooses to hold in H , and not the history leading one to this state, the Markov 

property holds and the resulting problem is a Markov Decision problem2.  This is not to say that 

all states can be reached in one step as was the case with the Ultimate X game in [2].  For 

example, for a one-line game, if the starting state is ( )( )2,2,4 , H , the only states that could be 

reached are ( )( )2,4 ,*  and ( )( )12,12 ,* .  That is, the only realizable ending streaks are ( )2,4  and 

( )12,12 .   

 

As in [2], we choose to study the non-discounted stream of returns and, for practical matters, 

assume the horizon is infinite.  Thus we focus on solving the infinite horizon, non-discounted, 

Markov Decision problem (ndMDP) which is represented by 

 
( ) ( ),

1

max 1

0

i

L

H H i
i

H

v g P R P H v

P v

   



 



 
 = 

 
+ = +  

 

=

  


    

 
2 The associated Markov chains are readily shown to be ergodic. 
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Here g is the maximal gain per round of play, v  is the relative bias for state  , P  is the 

steady-state probability of being in state   (before a hand is dealt) under optimal decisions, and 

HP  is the probability of being dealt hand H.  Note that ( )2g L  is the optimal expected return per 

bet unit for the game, the value we wish to compute.  The “2” comes from the game costing 

twice the normal amount on which the payouts are based.  For each hand, one must decide which 

of the possible 1, ,32i =  ways to hold subsets of H, designated by iH .  Each possible decision 

results in an expected outcome for the hand, 
iHR , and a probability of transitioning to state   of 

( ), iP H  .  Note that in the formulation above, we have reduced the starting state from ( ), H  to 

  by averaging out the impact of the random starting hand (hence the 
H

 ). 

 

Since 
iHR  is independent of the multipliers, let ( ) ( )

1

1
L

m  
=

=  and we can rewrite the problem 

as 

 
( ) ( ),max

0

iH H i
i

H

v g P m R P H v

P v

   


 


 
 

 
+ = +  

 

=

 


          (1) 

   

Consider ( ), iP H  .  This is the probability of starting in state   and transitioning to state  .  

This depends on which cards in H are held (designated by decision i leading to holding iH )  and 

the various possible outcomes (Straight, Flush, etc.) afterwards.  Let  be the set of possible 

outcomes and ( )|o iP H H  be the probability of outcome o  when cards iH  are held from 

hand H.  For each outcome there is a payout and a streak (see Table 1 for example).  The 

resulting streak is a function of the starting streak and the outcome represented by ( ),s o  .  

Note, for regular Ultimate X, ( ),s o   is independent of  , it depends only on the hand’s 

outcome.  States in Bonus Streak having only single-length streaks also exhibit this property. 
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For example in a 2-Line game, if the starting state has ( ) ( )( )2,2,4 , 1 =  the possible resulting 

streaks are 

( )
( )  

( )

( )

( )  

( )  

( )

2,4 ,3 ,
2,2,4

12,12

1 ,3 ,

1 2,2,4 4 , ,

2, 4,7,10,12

o Straight K Nothing

otherwise

o Straight K Nothing

o K FH Flush

otherwise


→ 






→ 



 

Thus 

 

( ) ( )

( )

( ) ( ) ( )

( )

,

,

, ,

1 1
,

|

|

i i

o
s o

L L

i i i

o
s o

P H P o H

P H P H P o H

 

 

   

 


=

= =
=



= =



 
 

and ( ), iP H   is the probability of outcomes having an associated multiplier of   given one 

starts in state ( ), H  and chooses to hold iH .  As in [2], we can iteratively solve (1) by 

 ( ) ( )1 1 1

,max
i

n n n n

H H i
i

H

v g e P m R P H v    



 + + +

 

 
+ = = +  

 
        (2) 

1 1 1n n ng P e 


+ + +=            

( )1 *

,

n n

iP P P H   


+



=           

The term ( )*

, iP H 
 stands for the value of ( ), iP H   with an optimal decision i. 

 

As discussed in [2], the number of permutations (with repetition) of M  things L at a time is 

L
M , so a 10-Line version of Ultimate X Bonus Streak with the multipliers shown in Table1 has 

1012 61,917,364,224=  multiplier patterns a player may see.  So the true number of states is 

5

Ln
M

 
 
 

 where n is the size of the deck of cards used (assuming order of the cards is not 

important).  For example, for decks of 52 cards and a 10-line game, the number of states is on the 

order of 1710 , over 100 quadrillion.  
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Fortunately, some of the problem size reductions discussed in [2] can be used in the Bonus 

Streak game.  In particular, the reductions are: 

1. Use equivalent suite permutations of hands to reduce H   to unique hands H  .  

This is easily implemented by letting HP  reflect the number of different suite 

permutations for a given hand.  For games with 52 cards, this reduces the size of  from 

2,598,960 hands to 134,459 in . 

2. Use state permutations to reduce the state space.  For example, in a 3-Line game, state 

( ) ( ) ( ) 1 , 2,4 , 12,12  will give the same expected payouts as state ( ) ( ) ( ) 2,4 , 1 , 12,12  

and state ( ) ( ) ( ) 1 , 12,12 , 2,4  since the order of the multipliers across the lines of play is 

not important.  As in [2] we let C   contain just the unique combinations (say those in 

sorted order) and denote equivalent states    in   for each C  . 

Unfortunately, a third reduction in [2] first suggested by Michael Shackelford [4] is not valid 

here.  That reduction stated that all states having the same value of ( )m   are equivalent.  The 

proof given in [2] relied on the fact that ( ), iP H   was independent of   which is not the case 

with Bonus Streak unless the states are composed of single-length streaks.   

 

Let C   contain just the unique combinations (say those in sorted order).  So 

 
1

1

M L
C

M

 + − 
=  

− 
. 

With the reductions, we wish to solve 

 ( ) ( )1 1 1

,max
i

n n n n

H H i
i

H C

v g e P m R P H v C    



 + + +

 

 
+ = = +  

 
           (3) 

1 1 1n n ng P e 


+ + +=            

( )
,

1

, H

n n

i SP P P H+





=     


          

With the reductions, we need to adjust our definition of ( ), iP H  .  Let 
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( ) ( ) ( )

( )

, ,

1 1
,

| ,
L L

i i i

o
s o

P H P H P o H   
 
     

 
  = =
  =

= =          

Note, the original values are 
1 1n nv v 

+ +=  for / ,C    .  As in [2], we stop (3) when 

  1 1 1 1010n n n n n n

C C

g g v v P P C   
 

+ + + −

 

− + − + −   .           (4) 

 

We solved a hypothetical3 1-Line version of Deuces Wild in Table 1 to get a gain (g) of 1.94665 

and steady state values shown in Table 4.  The Expected Value (EV) is 1.94665/2 = 0.973325. 

 

Deuces Wild – 1 Line 

  v  P  

1 -2.506 0.680794 

4 0.363605 0.069155 

12 8.08679 0.031268 

2,4 1.30152 0.079446 

10,12 15.8166 0.006048 

12,12 17.7519 0.014929 

2,2,4 3.38067 0.091454 

7,10,12 20.8671 0.006858 

12,12,12 27.4171 0.002111 

4,7,10,12 23.5686 0.007795 

12,12,12,12 37.0822 0.001174 

2,4,7,10,12 25.2629 0.008969 

 Table 4: Solution to one line version of the game with multiples in Table 2 

 

Table 5 gives the outcomes for the 1-3 Line versions of this Deuces Wild game.  Actual 

machines in casinos currently only offer 3, 5 and 10-Line versions, so the 1-Line and 2-Line 

versions are hypothetical. 

 

Deuces Wild Video Poker g EV 

1-Line 

2 Line 

1.94665 0.973325 

2-Lines 

 

3.88404 0.971010 

3-Lines 

 

5.81832 0.969721 

 Table 5:  Optimal expected returns for Deuces Wild Ultimate X Bonus Streak. 

 
3 Although we have not seen a 1-Line version of the game, we anticipate their introduction just as 1-Line games of 

Ultimate X were eventually released by IGT. 
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Interestingly, the Bonus Streak game appears to exhibit the same phenomenon that the Ultimate 

X games showed (Page 16, [2]): 

“the impact on expected return as the number of lines increases is negative“  

Note the EVs reduce as the number of lines increase in Table 5. 

 

As another example, Table 6 gives the payouts and streaks for 7-5 Bonus Poker Deluxe. 

 

Outcome Payout Streak 

Royal Straight Flush 800 2,5,8,10,12 

Straight Flush 50 2,5,8,10,12 

Four of a Kind (4K) 80 2,5,8,10,12 

Full House (FH) 7 2,5,8,10,12 

Flush 5 2,5,8 

Straight 4 2,5 

Three of a Kind (3K) 3 2,5 

Two Pair 1 1 

Jacks or Better Pair 1 1 

Nothing 0 1 

 Table 6:  Ultimate X Bonus Steak Multiplies, Bonus Poker Deluxe 

 

Table 7 gives the outcomes for the 1-3 Line versions of Bonus Poker Deluxe and Table 8 its 

steady-state values for 1-Line. 

 

Bonus Deluxe g EV 

1-Line 

2 Line 

1.93818 0.969092 

2-Lines 

 

3.86879 0.967198 

3-Lines 

 

5.79847 0.966412 

 Table 7: Optimal expected returns for Bonus Poker Deluxe Ultimate X Bonus Streak. 
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Bonus Deluxe – 1 Line 

  v  P  

1 -2.43554 0.750595 

5 1.3749 0.064623 

8 4.2542 0.011538 

12 8.10293 0.023618 

2,5 2.14009 0.073308 

5,8 7.56512 0.013025 

10,12 15.79 0.008086 

12,12 17.7151 0.00536 

2,5,8 8.7366 0.014784 

8,10,12 21.7695 0.009117 

12,12,12 27.3272 0.002571 

5,8,10,12 25.2758 0.010296 

12,12,12,12 36.9393 0.001391 

2,5,8,10,12 26.6274 0.011688 

 Table 8: Optimal relative biases and steady state probabilities for Bonus Deluxe. 

 

The challenge with analyzing games beyond 3-Lines is easily seen in Table 9 where we show the 

sizes of the states for the Deuces Wild game of Table 1. 

 

 1-Line 3-Lines 5-Lines 10-Lines 

L
M =  12 1,728 248,832 61,917,364,224 

1M L
C

L

 + − 
=  
 

 12 364 4,368 352,716 

Table 9:  Size of Sets for Ultimate X Bonus Streak Deuces Wild 

  

For example, using the state reduction to C for a 10-Line game gives 352,716 states.  For each 

state we need to find the optimal hold of 134,459 hands, each requiring 32 probability vectors 

and expected value calculations.  That is, over 1.5 trillion calculations for each are needed at 

each iteration in (3).  With Ultimate X, the third state size reduction (which is not generally 

applicable here) to set D (in [2]) reduced the state space size dramatically.  For the Deuces Wild 

game examined in [2], the sizes are as shown in Table 10.  Notice that the 10-Line Ultimate X 

game was easier to solve than the 3-Line game of Bonus Streak Ultimate X. 
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 1-Line 3-Lines 5-Lines 10-Lines 

L
M =  7 343 16,807 282,475,249 

1M L
C

L

 + − 
=  
 

 7 84 462 8,008 

D  7 29 51 106 

Table 10:  Size of Sets in [2] for Ultimate X Deuces Wild 

 

In short, without some massively parallel computing platform, some new insights are needed to 

solve the Bonus Streak versions of Ultimate X for 10-Line games.  5-Line games are within 

reach but will take weeks to solve. 

 

3. Possible Speed-ups 

Some obvious computational speed-ups include precomputing the following values which don’t 

change from iteration to iteration: 

1.  ( ) , 1, ,32
iH HP m R H i   =  

2. ( ), , , , 1, ,32H iP P H H C i      =  

The second suggestion above may be impractical because C grows so fast and  is large. 

 

Similarly, dividing the iterations to parallel computations over  and C are easily done.  With 

most processors implementing multiple cores and hyper-threading, parallel computing is 

possible4.   

 

As mentioned when discussing state-space reductions it was noted we can have a small reduction 

of states by collapsing those states having all single-length streaks and equal ( )m   values.  The 

impact is minimal, however.  For example, in the Jacks or Better game shown in Section 4 

below, the 3-Line game has 560 states in C and only 17 can be reduced using this equivalence.  

The overhead to implement this reduction hardly covers the slight reduction in state space size. 

 
4 We used 10 of our 12 cores on a Xeon E5645 Intel processor. 
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Another possible speed-up can be achieved using a termination criterion first suggested by Odoni 

[3].  He showed that 

 1 1n n n nL L g L L+ +     

 

1

1

max

min

n n n

n n n

L e v

L e v

 


 


+

+

= −

= −
 

So, stopping when 1 1n nL L + +−   will provide a good estimate of g for small enough  .  For 

examples, for the first Jacks or better game shown later using   values shown in the Table 

below, we found the following number of iterations needed to achieve the stopping condition: 

 

Lines 1 2 3 

Iterations with Condition (4) 28 29 30 

Iterations with 810 −=   25 25 26 

Iterations with 710 −=   22 24 24 

Iterations with 610 −=   21 21 21 

 

This stopping criterion may not leave us with as accurate estimates of the steady state 

probabilities or relative bias values as the stopping criterion discussed earlier with Equation (4), 

but it could save iteration rounds if we are interested in just computing the gain of a game.   

 

In [2] we discussed some additional computational reductions.  One was to use other forms of 

iteration where both storage requirements and rate of convergence improved when applicable.  

Such methods exist for solving discounted, infinite-horizon, Markov Decision problems.  

However, we know of no way to implement these for the non-discounted problem without first 

converting it to a form where they can be applied (as done by Koehler et al. in [1]) which itself 

required solving a Markov decision problem. 

 

We also mentioned it is possible to permanently eliminate sub-optimal decisions as the iteration 

proceeds, thus, in principle, reducing the problem size. In our explorations of this approach, the 

overhead introduced did not justify the improvement in convergence speed.    
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4. Results 

Below are the results we found for a selection of games, pay tables and bonus streaks for 1-Line 

and 3-Line versions of the game. 

 

Game Pays 
Streak EVs 

3K STR, FL HIGHER Regular 1-Line 3-Line 
Double Double Bonus  9-5  2,4  2,4,8  2,4,8,10,12  0.978729 0.987373 0.984091 

Double Double Bonus  8-5  2,4  2,4,8  2,4,8,10,12  0.967861 0.976225 0.972826  

Double Double Bonus  7-5  2,4  2,4,8  2,4,8,10,12  0.957120 0.965194 0.961655 

Double Double Bonus  6-5  2,4  2,4,8  2,4,8,10,12  0.946569 0.954333 0.950554 

Triple Double Bonus  9-6  2,4  2,4,8  2,4,8,10,12  0.981540 0.993189 0.990460 

Triple Double Bonus  9-5  2,4  2,4,8  2,4,8,10,12  0.970204 0.978236 0.974948 

Triple Double Bonus  8-5  2,4  2,4,8  2,4,8,10,12  0.959687 0.967222 0.963846 

Triple Double Bonus  7-5  2,4  2,4,8  2,4,8,10,12  0.949178 0.956277 0.952820 

Double Bonus  9-6-5  2,4  2,4,7  2,4,7,11,12  0.978062 0.982587 0.980935 

Double Bonus  9-6-4  2,4  2,4,8  2,4,8,10,12  0.963754 0.976847 0.974719 

Double Bonus  9-5-4  2,4  2,4,8  2,4,8,10,12  0.952738 0.962197 0.959335 

Double Bonus  8-5-4  2,4  2,4,8  2,4,8,10,12  0.941897 0.950919 0.947926 

Bonus Poker  7-5  2,4  2,4,8  2,4,8,10,12  0.980147 0.987757 0.984631 

Bonus Poker  6-5  2,4  2,4,8  2,4,8,10,12  0.968687 0.976217 0.973129 

Jacks or Better  9-5  2,4  2,4,8  2,4,8,10,12  0.984498 0.992208 0.989064 

Jacks or Better  8-5  2,4  2,4,8  2,4,8,10,12  0.972984 0.980650 0.977559 

Jacks or Better  7-5  2,4  2,4,8  2,4,8,10,12  0.961472 0.969092 0.966057 

Jacks or Better  6-5  2,4  2,4,8  2,4,8,10,12  0.949961 0.957538 0.954556 

  3K STR FLUSH HIGHER    

Bonus Poker Deluxe  8-6  2,5  2,5,7  2,5,7,11,12  0.984928 0.995215 0.987909 

Bonus Poker Deluxe  8-5  2,5  2,5,8  2,5,8,10,12  0.974009 0.980375 0.977853 

Bonus Poker Deluxe  7-5  2,5  2,5,8  2,5,8,10,12  0.962526 0.969092 0.966412 

Bonus Poker Deluxe  6-5  2,5  2,5,8  2,5,8,10,12  0.953611 0.958301 0.955063 

  
FL, FH, 

4K 
HIGHER     

Deuces Wild  
20-12-10-

4-4-3  
2,2,4  2,4,4,11,12  n/a  0.975791 0.984147 0.981442 

Deuces Wild  
20-12-10-

4-4-3  
2,2,4  2,4,4,10,12 n/a  0.975791 0.981346 0.978687 

Deuces Wild  
25-16-13-

4-3-2  
2,2,4  2,4,7,10,12 n/a  0.967651 0.973327 0.969721 

Deuces Wild  
20-10-8-4-

4-3  
2,2,4  2,4,5,10,12 n/a  0.959638 0.966627 0.963748 

Deuces Wild  
25-15-10-

4-3-2  
2,2,4  2,4,8,10,12 n/a  0.948182 0.954816 0.950898 

Bonus Deuces Wild  10-4-3-3  2,2,4  2,4,5,10,12  n/a  0.973644 0.988510 0.983837 

Bonus Deuces Wild  12-4-3-2  2,2,4  2,4,8,10,12 n/a  0.962183 0.975882 0.971701 

Bonus Deuces Wild  12-4-3-2  2,2,4  2,4,6,10,12 n/a  0.962183 0.969432 0.965357 

Bonus Deuces Wild  10-4-3-2  2,2,4  2,4,6,10,12 n/a  0.953368 0.958227 0.953696 

Tables from actual 3- and 5-Line Games 
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Game Pays 

Streak EVs 

3K, STR, 

FL 
HIGHER Regular 1-Line 3-Line 

Double Double Bonus  9-5  2,3,4  2,3,4,8,12  0.978729 0.986802 0.984845 

Double Double Bonus  8-5  2,3,4  2,3,4,8,12  0.967861 0.975780 0.973698 

Triple Double Bonus  9-6  2,3,4  2,3,4,8,12  0.981540 0.991724 0.990154 

Triple Double Bonus  9-5  2,3,4  2,3,4,8,12  0.970204 0.977546 0.975763 

Double Bonus  9-6-5  2,3,4  2,3,4,8,12  0.978062 0.991708 0.990513 

Double Bonus  9-6-4  2,3,4  2,3,4,8,12  0.963754 0.975194 0.973749 

Bonus Poker  7-5  2,3,4  2,3,4,8,12  0.980147 0.986813 0.985326 

Bonus Poker  6-5  2,3,4  2,3,4,8,12  0.968687 0.975253 0.973772 

Jacks or Better  8-6  2,3,4  2,3,4,7,12  0.983927 0.989636 0.988314 

Jacks or Better  8-5  2,3,4  2,3,4,8,12  0.972984 0.979645 0.978164 

Bonus Poker Deluxe  8-5  2,3,4  2,3,4,8,12  0.974009 0.983523 0.981652 

Bonus Poker Deluxe  7-5  2,3,4  2,3,4,8,12  0.962526 0.972368 0.970263 

  
FL, FH, 

4K 
HIGHER    

Deuces Wild  
20-12-9-4-

4-3  
2,2,4  2,4,8,10,12 0.970554 0.988058 0.985117 

Deuces Wild  
25-16-13-

4-3-2  
2,2,4  2,4,8,10,12 0.967651 0.976643 0.972999 

Bonus Deuces Wild  10-4-3-3  2,2,4  2,4,7,10,12 0.973644 0.993026 0.990081 

Bonus Deuces Wild  12-4-3-2  2,2,4  2,4,8,10,12 0.962183 0.975882 0.971701 

Tables from actual 10-Line Games  

 

 

5. Vulturing 

Vulturing refers to the process of scavenging left-over multipliers from previous players.  For 

Ultimate-X games, if there are any multipliers greater than one, the expected value of playing a 

hand at a 5 coin bet is positive.  In Bonus Streak games, that strategy doesn’t work because the 

multipliers are disabled for any bet less than the maximum bet.  However, the left-over 

multipliers may still lead to a positive expected value. 

 

Before proceeding further, we need a firm definition of what vulturing might encompass for any 

game leaving something of potential player value.  In short, vulturing dictates in what states we 

should play a game, and how, and when we should stop playing the game because it is no longer 

of any advantage to us.  We distinguish this from non-vulturing where the decisions to play a 

game and when to stop are dictated by other concerns such as game likes and dislikes, how much 

money one has with them, time available, and so on. 
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States: For both Ultimate X and Bonus Streak, the “states” are defined by the current multipliers 

and, for Ultimate X, the state can be simplified to just a sum of the multipliers.  Which states 

should be played and which not played has to be determined. 

 

How to play:  There are several issues associated with how to play a game.  The first is the bet 

size.  For both Ultimate X and Bonus Streak there are three possibilities to consider.  As with 

most video poker games, there is often a distinction between playing 1-4 coins versus five coins, 

usually in how much a Royal Straight Flush pays.  Five coins almost always pays-out more per 

coin-in than does 1-4 coins.  No serious player plays less than 5 coins per bet in such cases.   For 

both Ultimate X and Bonus Streak, playing 10 coins per line activates the multiplier generation 

feature.  That is, the outcome of the hand generates multipliers that are applied to future hands.  

Unlike Ultimate X, Bonus Streak multipliers do not apply to future hands unless they too are 

played at the maximum (10 coin per line) level. 

 

The second issue, once a bet size is chosen, is how to play a dealt hand?  This has a lot to do with 

what we do at the end of the hand of play.  If we have placed a maximum bet (10 coins per line), 

we should consider the impact our play has on potential new multipliers.  Unlike non-vulturing 

players, we do not have to endure unattractive states (we simply stop playing) or we can take 

actions that increase our short-term results at the expense of long-term ones.  In Ultimate X, we 

can use the multipliers on a hand at less than the max bet (5 coins) and play using the optimal 

strategy for the underlying game. 

 

Stopping:  In short, vulturing entails starting at a desirable state and stopping at an undesirable 

state.  What entails a desirable state and undesirable one needs some discussion.  One might 

describe a desirable state as one that has a positive expected value for the next hand of play, and 

then stopping occurs when a state is encountered where the expected value of the next hand of 

play is negative. Another might describe one as having a positive expected value across a 

sequence of hands played until the player decides to stop playing.  There may be hands played 

with negative expected returns for one hand that are covered by hands already having good 

multipliers. 
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Suppose one finds the following left-over multipliers in a 9-5 Jacks or Better game: 

( ) ( ) ( ) 2,4 , 1 , 1 .  Should one “vulture” this?  If only one hand will be played (at a max bet) for 

this 3-line game, the expected value is 0.984498 * 4/6 = 0.656332.  The 0.984498 is the expected 

value for the normal 9-5 game (since we are playing just one hand).  The 4/6 is the average 

multiplier per coin-in.  So this is not attractive.  However, since we are playing at the max bet, 

we have the potential of new streaks and the next state may compensate for the expected loss for 

the current state (see the examples given shortly).  So, like normal play in Ultimate X and Bonus 

Streak, we must anticipate future hands, even in vulturing. 

 

So which states should we vulture in Bonus Streak?  Two conditions might be considered.  From 

a solution to (1) we have one condition.  Vulture state   if 

C1: 2v g L +  . 

This rule takes into account future hands.  Another condition is also obvious, vulture a state if 

 C2: ( ) max 2
iH H

i
H

m P R L


 . 

This latter condition just considers only one hand (played perfectly for the underlying game) and 

ignores any future possibilities.   

 

It is possible that a state satisfies the second condition without satisfying the first one.  For 

example, in the Deuces Wild game used throughout this paper, the state ( ) ( ) ( ) 1 , 4 , 2,4  has 

 ( ) max 7 0.9676505 6.7735535 6
iH H

i
H

m P R


= • =   

but  

 -0.8098685+5.8183247=5.0084562<6v g + = . 

This means that playing the hand myopically for one hand is better than using perfect play for 

the regular Bonus Streak game.  Of course, one may get lucky with a new set of attractive 

multipliers. 

 

Likewise, it is possible a state satisfies the first condition without satisfying the second.  For 

example, the state ( ) ( ) ( ) 1 , 1 , 4,7,10,12 has 
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 ( ) max 6 0.9676505 5.805903 6
iH H

i
H

m P R


= • =   

but 

 18.4245963+5.8183247=24.24292>6v g + = . 

One can see that, although the first hand will be played with a negative expected value, the 

subsequent three hands will all have a positive expected value. 

 

Strictly speaking, condition (C1) assumes play will follow the normal optimal play for the Bonus 

Streak game.  However, we won’t be playing a normal Bonus Streak game but rather one that 

terminates with unattractive states.  Likewise, (C2) assumes we will play the hand myopically, 

ignoring any future hands (at least until we see the next state which might be good).  We propose 

using C1 where the gain and relative bias values are determined by what we call the Optimal 

Vulturing problem and C2 only when a state does not satisfy C1 but does satisfy C2. 

 

Here we give a formulation for the Optimal Vulturing problem.  For any state C   let ( )   be 

1 if we should vulture the game under rule C1 in state   and 0 otherwise.   

( ) ( ) ( ),

max

max

0

iH H i
i

H

g

v g P m R P H v

P v



   


 


   
 

 
+ = +  

 

=

 



         (4) 

These gain and bias values may be different from those determined by (1). 

 

Define the following for a fixed set C  . 

( ) ( ) ( )

( )

,max

0

0

1

iH H i
i

H

v g P m R P H v

P v

   


 


   



 



 

 
+ = +  

 

=




= 
 

 

          ( ) 
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Theorem 1 

Given a solution to ( ) then for any    

( ) ( )* 0 0v     =  

( ) ( )* 0 1v     =  

Proof: 

We have for any state s 

( ) ( ) ( )

( ) ( ) ( )
 

( ) ( )

( )
( )( ) ( )

( ) ( )( ) ( )
 

* *
*

,

, ,

/

, ,

/

max

max

i

i

i s

s H H i
i

H

H H s i s i
i

H

H s H H si s i s
H H C

v g P m s R P H v

P m s R P H v P H v

v P P H P m s R P H v

  


   
 

   
 

 

   

   

 

 

  

 
+ = + 

 

 
= + +  

 

 
= + +  

 

 

 

  

 

So 

0s s

s

Pv =  

gives 

  

( )
( )( )

( )
( ) ( )( ) ( )

 

*

*
*

,

,

/
i s

s H s i s
s H

s H H s i s
s H C

v P P P H

g

P P m s R P H v

 

 
 

 

 



 

 
 
 

=   
 + +     

 

  
 

Now, if * 0v   and ( ) 1  =  or * 0v   and ( ) 0  =  we reach a contradiction of the 

optimality of our solution since with all the other decisions held constant, we could 

achieve a better gain value since 

( )( )*, 0s H s i s
s H

P P P H


  . 

 

 

Theorem 1 suggests a greedy algorithm to solve (4).  Let C = . Given a solution to (1), if any 

conditions of Theorem 2 are not satisfied for some    set 
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( )

*

*

0 0

1 0

v

v





 

 


= 
 

 

Then use the following greedy algorithm: 

1.  Solve for the steady state values using the following iterative approach: 

 ( ) ( ) ( )1 1

,max
i

n n n

H H i
i

H C

v g P m R P H v C   



   + +

 

 
+ = +  

 
           

1 1 1n n ng P e 


+ + +=          

  

( )
,

1

, H

n n

i SP P P H+





=     


        

  

2.  If any values for a state    do not meet the conditions of Theorem 1, pick one 

and change its   value and return to Step 1.  Otherwise stop. 

 

Since the gain increases with each cycle, the solution monotonically increases until no further 

opportunities exist.  This does not guarantee that the greedy algorithm stops with an optimal 

solution.  However, we have not seen any solutions better than the ones we have found using the 

greedy algorithm. 

 

Here are the steady-state results for the Deuces Wild game highlighted in this paper. 

 

Deuces Wild Video Poker EV 

1-Line 

2 Line 

1.658137 

2-Lines 

 

1.527503 

3-Lines 

 

1.513952 

 

 
 

These values are not indicative of one’s vulturing EV since no simple scheme dictates what 

collection of multipliers a person might abandon.  The reasons one stops playing a game and 

leaving unused multipliers are varied and indeterminate and could easily include factors like 

fatigue, alcohol consumption, financial resources, superstition, other obligations, unacceptable 

conditions (like an obnoxious player, too cold, too much noise, etc.), and so forth. So not 
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knowing the probability of finding an abandon game state, computing an overall expected value 

is impossible. 

 

So, assuming we have an optimal solution to (4), we have the following vulturing rules.  Vulture 

a state if 

C1: 2v g L +   and play according to optimal decisions using (4) values. 

Otherwise, vulture a state if 

C2: ( ) max 2
iH H

i
H

m P R L


  and play it myopically – using perfect play for the 

underlying video poker game. 

 

Here is an example contrasting the use of using an optimal solution to (4) instead of the normal 

solution to (1) that doesn’t take into account a stopping condition. Suppose in our example 

Deuces Wild game we are at the state ( ) ( ) ( ) 1 , 2,4 , 2,4 .  We have 

 Using Model (1): 

  C1: 0.1763380+5.8183247=5.9946627<6v g + =  so don’t vulture (just barely). 

However, 

 Using Model (4): 

  C1: -0.9836034+8.7346019=7.7509984>6v g + =  so vulture. 

On the surface, the result using (1) seems counter-intuitive.  Clearly the first hand would be 

played with a negative expected value ( 5.8183247/6 * 5/6) and the second will have a positive 

expected value (at worst, 5.8183247/6 * 9/6). However, (1) assumes we will keep going so 

further hands would impact the expected return, and since the overall Bonus Streak game has a 

negative expected value, the second hand return isn’t enough, on average, to overcome the 

expected long-term play.  Model (4) takes into account that we will stop after the second hand 

unless it gets us to a “good state”.  

 

Of some interest is the size of ( ): max 2
iH H

i
H

m P R L 


 
   

 
 .  Table 11 shows the sizes of 

  for the Deuces Wild Bonus Streak game used earlier.  
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 1-Line 3-Lines 5-Lines 10-Lines 

L
M =  12 1,728 248,832 61,917,364,224 

1M L
C

L

 + − 
=  
 

 12 364 4,368 352,716 

  4 22 76 ? 

Table 11:  Size of Sets for Ultimate X Bonus Streak Deuces Wild 

 

 

6. Static Strategies for 5 and 10-Line Games 

Michael Shackleford, The Wizard of Odds, noted [5] that 

“in 10-play the multipliers tend to average out somewhat and a single strategy can be used” 

In essence, he reduced the state space   by aggregating states.  Aggregating states in a large 

Markov Decision problem is a worthwhile approach used by many.  Almost always, such 

aggregation produces only an approximation to the original problem.   

 

Shackleford suggests that a static strategy (that is, one that plays a given hand independent of the 

current multiplier streaks) gives overall performance close to a perfect strategy.  What 

Shackleford observed is: 

“a single strategy can be used with a cost in errors of only 0.08%” 

 

Considering the enormous simplification of playing strategy and the ability to compute 5 and 10-

Line guidelines, a cost of only 0.08% is amazing. 

 

So how does one compute a static strategy? 

 

 

7. Summary 

This paper presented an analysis of Ultimate X Bonus Streak games.  This generalizes the results 

of Ultimate X games [2] since Ultimate X can be considered as a special case of Ultimate X 
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Bonus Streak.  However, Ultimate X can be solved faster using reductions that can’t be used 

with Bonus Streak games. 

 

At the present time, we are unable to solve Bonus Streak games with 10-Lines because the state 

space is so large.  5-Line games are within reach, but we have not solved them yet.  We are 

working on new insights and algorithmic improvements. 

 

Lastly, various conditions for determining profitable vulturing states were determined. 
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